Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements.
نویسندگان
چکیده
Adsorption of phospholipid vesicles on titanium dioxide was studied by a combination of quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy techniques. Vesicle size, concentration in solution, and bilayer composition were systematically varied. A strong dependence of the QCM-D response (magnitude of the frequency and dissipation factor shifts) on the vesicle concentration in solution was observed. QCM-D data were compared with a linear viscoelastic model based on the Voight element to determine layer thickness, density, elastic modulus, and viscosity. Based on the results of this comparison, it is proposed that (i) layer thickness and density, as sensed by QCM-D, saturate much earlier (in time) than the actual surface coverage of the vesicles (number of vesicles per unit area); (ii) changes in surface coverage that occur after the density and thickness, as sensed by QCM-D, have saturated, are interpreted by the model as changes in the layer's viscoelastic properties. This is caused by the replacement of the viscous media (water) between the vesicles by viscoelastic media of similar density (vesicles); (iii) viscoelastic properties of layers formed at different vesicle concentrations differ significantly, while the vesicle surface coverage in those layers does not. Based on the comparison between the atomic force microscopy images and QCM-D data acquired at various vesicle concentrations it is proposed that QCM-D response is not directly related to the surface coverage of the vesicles.
منابع مشابه
Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies
We developed an impedance quartz crystal microbalance (QCM) approach with the ability to simultaneously record mass changes and calibrated energy dissipation with high sensitivity using an impedance analyzer. This impedance QCM measures frequency shifts and resistance changes of sensing quartz crystals very stable, accurately, and calibrated, thus yielding quantitative information on mass chang...
متن کاملSurface Modification Enhanced Reflection Intensity of Quartz Crystal Microbalance Sensors upon Molecular Adsorption.
Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to ...
متن کاملPrototypes of Newly Conceived Inorganic and Biological Sensors for Health and Environmental Applications
This paper describes the optimal implementation of three newly conceived sensors for both health and environmental applications, utilizing a wide range of detection methods and complex nanocomposites. The first one is inorganic and based on matrices of calcium oxide, the second is based on protein arrays and a third one is based on Langmuir-Blodgett laccase multi-layers. Special attention was ...
متن کاملInvestigating how vesicle size influences vesicle adsorption on titanium oxide: a competition between steric packing and shape deformation.
Understanding the adsorption behavior of lipid vesicles at solid-liquid interfaces is important for obtaining fundamental insights into soft matter adsorbates as well as for practical applications such as supported lipid bilayer (SLB) fabrication. While the process of SLB formation has been highly scrutinized, less understood are the details of vesicle adsorption without rupture, especially at ...
متن کاملاثر حضور نانوخوشههای مس به عنوان زیرلایه بر خواص بلوری و نوری لایه دیاکسیدتیتانیوم
Two 10 and 20nm samples of Cu nano-cluster were grown on quartz substrates with a thickness of by electron beam deposition method. Nanolayers of titanium dioxide with a thickness of 300 nm were deposited on these Cu nano-cluster layers. For comparison، a layer of titanium dioxide with a thickness of 300 nm was also coated on quartz substrate. All coatings were conducted using electron-beam phys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 122 20 شماره
صفحات -
تاریخ انتشار 2005